College of Engineering
ucr | and Computer Science

IIIIIIIIIIIIIIIIIIIIIIIIII

Types

COP-3402 Systems Software
Paul Gazzillo

Why Use Types?

To prevent errors during runtime

Typed vs Untyped

A type is

a set of values

and operations on those values

int: set of integers and the arithmetic operations

bool: true/false and the logic connectives (and, or, not)

Typed languages restrict variable's range of values (Python, C, Java, etc)

Untyped languages do not (Lisp, assembly)

Safe vs Unsafe

Runtime errors are

- Trapped

- terminated by machine, e.g., NULL-pointer error, divide-by-zero

- Untrapped

- program continues, e.g., write past array bounds

Safe languages prevent untrapped (and some trapped) errors

Static vs Dynamic Checking

When do checks happen

- Compile-time (static): C, Java
- Run-time (dynamically): Python, Java(?)

Weak vs Strong

Forbidden errors: all untrapped errors and some trapped errors
Good behavior: a program has no forbidden behaviors

- Strongly-checked: all legal programs have good behavior
- Weakly-checked: some programs violate safety

&

Table 1. Safety

Typed Untyped
Safe ML, Java | LISP
Unsafe C Assembler

http://lucacardelli.name/Papers/TypeSystems.pdf

Demo: Python vs C

Static Type Checking

- Record (or infer) types of identifiers in symbol table
- Post-order tree traversal

- Check identifiers used in
- Arithmetic operators
- Function calls
- Assighments

- Lookup type in symbol table
- Constants have a fixed type
- 3isanint
- 5.2 is afloat
- True is a bool (note: C does not have a bool type)

9
UCF

Function Types

e Scalar values have a primitive type
o int, char, long, etc

e |[f symbol "x" has type "int" we can write:
X :int

e Function types describe parameters and return values
e |[f ftakestwo integers and return a bool, we can write

f:(int, int) -> bool
e What is the type of multiplication (*)?

*: (int, Int) -=> int

10

Symbol Table: Mapping Variables to Memory

e Compiler assigns memory to each variable

e Maintains mapping between names and locations
e Creates new mapping on declaration
e Refersto mapping when variables are used

Structure of the Symbol Table

variable name variable type address
R1 Rectangle 2004
greeting String 3006 - _
il int

8766 .

http://www.mathcs.emory.edu/~cheung/Courses/170.2010/Syllabus/02/prim-var-def.html

2004

o

T 3006

Jm

| S
Suneard

UCF

http://www.mathcs.emory.edu/~cheung/Courses/170.2010/Syllabus/02/prim-var-def.html

Demo: Static Checking a Tree

int x;

int vy;

read x;

y =1+ x * 7;

12

int x;

bool vy;

read x;

y = 1 + x;

print y * (x + 1)

&

Safety Guarantees

If a type checker accepts a program is it actually safe?
type soundness: checker says safe, program is safe

Example: memory corruption due to index out of bounds

- unsound: C type checker permits the program
- sound: Java type checker rejects the program (at runtime)

13

&

Proving Type Soundness

Goal: well-typed programs are safe programs

\ N

Formal soundness: each provable sentence is valid with respect to semantics

Need to define semantics first

Define type rules that "run" over the semantics

14

Type Coercion in C

e Instead of type error Implicit Type Conversion

e C inserts conversions

e Convertsto Eha'
highest-precision type Shortint

e char+int->int+int int

unsigned int
long
unsigned
long long
float

double

long double

15 p
https://www.geeksforgeeks.ora/type-conversion-c/ gﬁ
UCF

https://www.geeksforgeeks.org/type-conversion-c/

Demo: Subverting C's Type System

