College of Engineering
cr | and Computer Science

IIIIIIIIIIIIIIIIIIIIIIIIII

Regular Expressions to

Finite Automata

COP-3402 Systems Software
Paul Gazzillo

&

Automate Lexing by Generating Automata

e We can automatically generate lexers
o Specify tokens via regular expressions
o Algorithm to convert regex to automata
e Two methods
o Simulate an NFA
o Convert an NFA to a DFA: subset construction

Convert Via the Subset Construction

e NFA can be in multiple states at once
e Finite automaton means finite number of states

e Therefore, finite number of combinations of states
o How many subsets of states are there? (Hint: powerset)

Translate Each Regex in Order of Operations

e Convert each subexpression to an NFA
e Combine the NFAs for each subexpression

e Each regex operation corresponds to an NFA template
o Concatenation
o Alternation
o Kleene closure

4

Demo: Regex Operations as NFAs

Concatenation

start =
i T // e
\Q{ ‘”\v/ *‘”\f\)

Figure 3.41: NFA for the concatenation of two regular expressions

6 &

Alternation

Figure 3.40: NFA for the union of two regular expressions

7
UCF

Kleene Closure

start /:g ““““
: € \ € »(\

1 N(s) @

Figure 3.42: NFA for the closure of a regular expression
8 +
&

UCF

The NFA for (a|b)*abb

Figure 3.34: NFA N for (a|b)*abb

9
UCF

Demo: Converting Regex to NFA

(a|b)*abb
aa*|bb*

((albc)b)*

:
UCF

Construct a DFA from an NFA Systematically

e Each DFA state created from subset of NFA states
o Remember: can be in multiple states

e "Simulate" being in multiple states using a single state
o Dragon book 3.7

e The multiple states are a subset of the NFA states

e Create the DFA by calling each subset a single DFA
state

11

Sketch of the Subset Construction Algorithm

e Start at the starting state of the NFA
e Group all states reachable by ¢ (epsilon)
o This is the ¢-closure
o Call this group of states the initial state for the DFA
e For each symbol s in the alphabet (remember its finite)
o Get all that states that s transitions to
o Find the e-closure of those states
o Call this group of states a single state of the DFA
e Repeat for all combinations of NFA states and symbols
o Stop when we have cov%red them all '

Demo: Converting NFA to DFA

(a|b)*abb
aa*|bb*

((albc)b)*

:
UCF

Figure 3.34: NFA N for (a|b)*abb

NFA STATE DFA STATE | a | b
{0,1,2,4,7} A B|C
{1,2,3,4,6,7,8} B B | D
{1,2,4,5,6,7} C B|C
{1,2,4,5,6,7,9} D B | E
{1,2,3,5,6,7,10} E B|C

Figure 3.35: Transition table Diran for DFA D gﬁ
UCF

Conclusion

We can automatically generate lexers

Regular expressions correspond to automata
o Automata implemented with transition tables or if
statements and while loops

Simpler to generate NFAs from regular expressions
Subset construction to convert NFA to DFA

o Algorithm in Dragon Book 3.7.1
o Alternative: simulate an NFA (Dragon Book 3.7.2)

15

&

