
Regular Expressions to
Finite Automata
COP-3402 Systems Software

Paul Gazzillo

Automate Lexing by Generating Automata

● We can automatically generate lexers
○ Specify tokens via regular expressions
○ Algorithm to convert regex to automata

● Two methods
○ Simulate an NFA
○ Convert an NFA to a DFA: subset construction

2

Convert Via the Subset Construction

● NFA can be in multiple states at once
● Finite automaton means finite number of states
● Therefore, finite number of combinations of states

○ How many subsets of states are there? (Hint: powerset)

3

Translate Each Regex in Order of Operations

● Convert each subexpression to an NFA
● Combine the NFAs for each subexpression
● Each regex operation corresponds to an NFA template

○ Concatenation
○ Alternation
○ Kleene closure

4

Demo: Regex Operations as NFAs

5

Concatenation

6

Alternation

7

Kleene Closure

8

The NFA for (a|b)*abb

9

Demo: Converting Regex to NFA

10

(a|b)*abb

aa*|bb*

((a|bc)b)*

Construct a DFA from an NFA Systematically

● Each DFA state created from subset of NFA states
○ Remember: can be in multiple states

● "Simulate" being in multiple states using a single state
○ Dragon book 3.7

● The multiple states are a subset of the NFA states
● Create the DFA by calling each subset a single DFA

state

11

Sketch of the Subset Construction Algorithm

12

● Start at the starting state of the NFA
● Group all states reachable by ε (epsilon)

○ This is the ε-closure
○ Call this group of states the initial state for the DFA

● For each symbol s in the alphabet (remember its finite)
○ Get all that states that s transitions to
○ Find the ε-closure of those states
○ Call this group of states a single state of the DFA

● Repeat for all combinations of NFA states and symbols
○ Stop when we have covered them all

Demo: Converting NFA to DFA

13

(a|b)*abb

aa*|bb*

((a|bc)b)*

14

Conclusion

● We can automatically generate lexers
● Regular expressions correspond to automata

○ Automata implemented with transition tables or if
statements and while loops

● Simpler to generate NFAs from regular expressions
● Subset construction to convert NFA to DFA

○ Algorithm in Dragon Book 3.7.1
○ Alternative: simulate an NFA (Dragon Book 3.7.2)

15

