
Bottom-Up Parsing

Thanks to Charles E. Hughes

Reductions

• Top-down focuses on producing an input

string from the start symbol

• Bottom-up focuses on reducing the string

to the start symbol

• By definition, reduction is the reverse of

production

Handle Pruning

• Bottom-up reverses a rightmost derivation since rightmost rewrites

the leftmost non-terminal last

• Bottom-up must identify ahandle of a sentential form (a string of

terminals and non-terminals derived from the start symbol), where

the handle is the substring that was replaced at the last step in a

rightmost derivation leading to this sentential form.

• A handle must match the body (rhs) of some production

• Formally, if S rm* aAw rmabw where A → b then b, in the position

following a, is a handle of abw

• We would like handles to be unique, and they are so in

unambiguous grammars

• Handle pruningis the process of reducing a sentential form to a

deriving sentential form by reversing the last production

shift/reduce Parsing

• This involves a stack that holds the left part of a

sentential for with the input holding the right part

• Initially the stack has a bottom of stack marker

and the input is the entire string to be parsed,

plus an end marker

Stack = $ Input = w$

• Our goal is to consume the string and end up

with the start symbol on stack

Stack = $S Input = $

shift/reduce Process

• The process is one where we can either

– Shift the next input symbol onto stack

– Reduce “handle” on top of stack

– Accept if successfully get to start symbol with

all input consumed

– Error is a syntax error is discovered

Conflicts in shift/reduce

• Handle pruning can encounter two types

of conflicts

– reduce/reduce is when there are two

possible reductions and we cannot decide

which to use

– shift/reduce conflict is when we cannot

decided whether to shift or reduce

Classic shift/reduce

stmt → if expr then stmt

| if expr then stmt else stmt

| other

Stack = $… if expr then stmt

Input = else … $

Should we shift else into stack or reduce??

Can prefer shift over reduce, but that may not work

as a general policy

Classic reduce/reduce

If have two types of expression lists preceded by an id. One is array reference

using parentheses and other is a function call. Both can appear by themselves.

Relevant rules are:

stmt → id (p_list)

| expr

p_list → p_list parm | parm

e_list → e_list parm | expr

expr → id (e_list) | id

parm → id

Stack = $...id(id Input = , id)…$

Is this first expr or a parm?

One solution is that we differentiate procid from id in symbol table and hence

via lexical analysis. Then the third symbol in stack, not part of handle,
determines the reduction. The key is context.

Our Goal

Find a useful subset of context free grammars that

1.Covers all or at least most unambiguous CF

languages

2.Is easy to recognize

3.Avoids conflicts without severely limiting

expressiveness

4.Is amenable to a fast parsing algorithm

LR Parsing

LR Parsing

LR(k) parsing.

left to right right-most k lookahead
scanning derivation

• LR is associated with bottom-up; LL with top-down
• LL(k), k>1, languages LL(k-1) languages
• LR(1) languages LL(k) languages, k 0
• LR(k), k>1, languages = LR(1) languages
• However, LR(k), k>1, grammars LR(k-1) grammars
• LR grammars can find errors quickly, but they do not

always have good context to recover

LR Parser Types

• SLR – simple LR parser

• LALR –look-head LR parser

• LR – most general LR parser

• SLR, LALR and LR are closely related

– The parsing algorithm is the same

– Their parsing tables are different

LR Parsing Algorithm

Sm

Xm

Sm-1

Xm-1

.

.

S1

X1

S0

a1 ... ai ... an $

Action Table

terminals and $

s
t four different
a actions
t
e
s

Goto Table

non-terminal

s
t each item is
a a state number
t
e
s

LR Parsing Algorithm

stack

input

output

Configuration of LR Algorithm

• A configuration of a LR parsing is:

(So X1 S1 ... Xm Sm, ai ai+1 ... an $)

Stack Rest of Input

• Sm and ai decide the parser action by consulting the parsing action

table. (Initial Stack contains just So)

• A configuration of a LR parsing represents the right sentential form:

X1 ... Xm ai ai+1 ... an $

Actions of LR-Parser

1. shift s -- shifts the next input symbol onto the stack. Shift is performed

only if action[sm,ai] = sk, where k is the new state. In this case

(So X1 S1 ... Xm Sm, ai ai+1 ... an $) ➔ (So X1 S1 ... Xm Sm ai k, ai+1 ... an $)

2. reduce A→b (if action[sm,ai] = rn where n is a production number)

– pop 2|b| items from the stack;

– then push A and k where k=goto[sm-|b |,A]

(So X1 S1 ... Xm Sm, ai ai+1 ... an $) ➔ (So X1 S1 ... Xm-|b | Sm-|b | A k, ai ... an $)

– Output is the reducing production reduce A→b or the associated semantic

action or both

3. Accept – Parsing successfully completed

4. Error -- Parser detected an error (empty entry in action table)

Reduce Action

• pop 2|b| (=j) items from the stack; let us assume that

b=Y1Y2...Yj

• then push A and s where s=goto[sm-j,A]

(So X1 S1 ... Xm-j Sm-j Y1 Sm-j+1 ...Yj Sm, ai ai+1 ... an $)

➔ (So X1 S1 ... Xm-j Sm-j A s, ai ... an $)

• In fact, Y1Y2...Yj is a handle.

X1 ... Xm-j A ai ... an $ X1 ... Xm-j Y1...Yj ai ai+1 ... an $

Expression Grammar

Example: Given the grammar:

E → E + T T → T * F F → id

E → T T → F F → (E)

Compute Follow.

Follow

E {), +, $ }

T {) , *, +, $ }

F {) , * , +, $ }

SLR Parsing Tables

• An LR(0) item of a grammar G is a production of G with a dot at

some position of the right side.

• Ex: A → aBb LR(0) Items: A → .aBb

A → a.Bb

A → aB.b

A → aBb.
• Sets of LR(0) items will be the states of action and goto tables of the

SLR parser.

• A collection of sets of LR(0) items (the canonical LR(0) collection)

is the basis for constructing SLR parsers.

• Augmented Grammar:

G’ is G with a new production rule S’→S where S’ is the new starting

symbol.

The Closure Operation

• If I is a set of LR(0) items for a grammar G, then closure(I) is the

set of LR(0) items constructed from I by the two rules:

1. Initially, every LR(0) item in I is added to closure(I).

2. If A → a.Bb is in closure(I) and B→ is a production rule

of G; then B→. will be in the closure(I). We will apply this

rule until no more new LR(0) items can be added to closure(I).

Closure Example

E’ → E closure({E’ → .E}) =

E → E+T { E’ → .E kernel item

E → T E → .E+T

T → T*F E → .T

T → F T → .T*F

F → (E) T → .F

F → id F → .(E)

F → .id }

Closure Algorithm

function closure (I)

begin

J := I;

repeat

for each item A → a.Bb in J and each production

B→ of G such that B→. is not in J do

add B→. to J;

until no more items can be added to J;

return J;

end

Goto Function

If I is a set of LR(0) items and X is a grammar symbol (terminal or non-terminal), then
goto(I,X) is defined as follows:

If A → a.Xb in I then every item in closure({A → aX.b}) will be in goto(I,X).

If I is the set of items that are valid for some viable prefix , then goto(I,X) is the set

of items that are valid for the viable prefix X.

Example:

I ={ E’ → .E, E → .E+T, E → .T,

T → .T*F, T → .F, F → .(E), F → .id }

goto(I,E) = { E’ → E., E → E.+T }

goto(I,T) = { E → T., T → T.*F }

goto(I,F) = {T → F. }

goto(I,() = { F → (.E), E → .E+T, E → .T, T → .T*F, T → .F,

F → .(E), F → .id }

goto(I,id) = { F → id. }

Canonical LR(0) Collection

• To create the SLR parsing tables for a grammar G, we

will create the canonical LR(0) collection of the grammar

G’.

• Algorithm:
C is { closure({S’→.S}) }

repeat the followings until no more set of LR(0) items can be added to C.

for each I in C and each grammar symbol X

if goto(I,X) is not empty and not in C

add goto(I,X) to C

• The goto function is a deterministic FSA (finite state

automaton), DFA, on the sets in C.

Canonical LR(0) Example

I0: E’ → .E I1: E’ → E. I6: E → E+.T I9: E → E+T.

E → .E+T E → E.+T T → .T*F T → T.*F

E → .T T → .F

T → .T*F I2: E → T. F → .(E) I10: T → T*F.

T → .F T → T.*F F → .id

F → .(E)

F → .id I3: T → F. I7: T → T*.F I11: F → (E).

F → .(E)

I4: F → (.E) F → .id

E → .E+T

E → .T I8: F → (E.)

T → .T*F E → E.+T

T → .F

F → .(E)

F → .id

I5: F → id.

DFA of Goto Function

I0 I1

I2

I3

I4

I5

I6

I7

I8
to I2
to I3
to I4

I9
to I3
to I4
to I5

I10

to I4
to I5

I11

to I6

to I7

id

(

F

*

E

E

+
T

T

T

)

F

F
F

(

idid

(

*

(

id

+

Compute SLR Parsing Table

1. Construct the canonical collection of sets of LR(0) items for G’.

C{I0,...,In}

2. Create the parsing action table as follows

• If a is a terminal, A→a.ab in Ii and goto(Ii,a)=Ij then action[i,a] is shift

j.

• If A→a. is in Ii , then action[i,a] is reduce A→a for all a in
FOLLOW(A) where AS’.

• If S’→S. is in Ii , then action[i,$] is accept.

• If any conflicting actions generated by these rules, the grammar is not
SLR(1).

3. Create the parsing goto table

• for all non-terminals A, if goto(Ii,A)=Ij then goto[i,A]=j

4. All entries not defined by (2) and (3) are errors.

5. Initial state of the parser contains S’→.S

(SLR) Parsing Tables

state id + * () $ E T F

0 s5 s4 1 2 3

1 s6 acc

2 r2 s7 r2 r2

3 r4 r4 r4 r4

4 s5 s4 8 2 3

5 r6 r6 r6 r6

6 s5 s4 9 3

7 s5 s4 10

8 s6 s11

9 r1 s7 r1 r1

10 r3 r3 r3 r3

11 r5 r5 r5 r5

Action Table Goto Table

0) E’ → E

1) E → E+T

2) E → T

3) T → T*F

4) T → F

5) F → (E)

6) F → id

Actions of SLR-Parser
stack input action output

0 id*id+id$ shift 5

0id5 *id+id$ reduce by F→id F→id

0F3 *id+id$ reduce by T→F T→F

0T2 *id+id$ shift 7

0T2*7 id+id$ shift 5

0T2*7id5 +id$ reduce by F→id F→id

0T2*7F10 +id$ reduce by T→T*F T→T*F

0T2 +id$ reduce by E→T E→T

0E1 +id$ shift 6

0E1+6 id$ shift 5

0E1+6id5 $ reduce by F→id F→id

0E1+6F3 $ reduce by T→F T→F

0E1+6T9 $ reduce by E→E+T E→E+T

0E1 $ accept

SLR(1) Grammar

• An LR parser using SLR(1) parsing tables for a

grammar G is called the SLR(1) parser for G.

• If a grammar G has an SLR(1) parsing table, it is

called an SLR(1) grammar.

• Every SLR grammar is unambiguous, but every

unambiguous grammar is not an SLR grammar.

Conflicts

• If a state does not know whether it will make a shift

operation or reduction for a terminal, we say that there is

a shift/reduce conflict.

• If a state does not know whether it will make a reduction

operation using the production rule i or j for a terminal,

we say that there is a reduce/reduce conflict.

• If the SLR parsing table of a grammar G has a conflict,

we say that that grammar is not SLR grammar.

Conflict Example 1

S → L=R I0: S’ → .S I1: S’ → S. I6: S → L=.R I9: S → L=R.

S → R S → .L=R R → .L

L→ *R S → .R I2: S → L.=R L→ .*R

L → id L → .*R R → L. L → .id

R → L L → .id

R → .L I3: S → R.

I4: L → *.R I7: L → *R.

Problem R → .L

FOLLOW(R)={=,$} L → .*R I8: R → L.

= shift 6 L → .id

reduce by

shift/reduce conflict I5: L → id.

Action[2,=] = shift 6

Action[2,=] = reduce by R → L

[S L=R *R=R] so follow(R) contains =

Conflict Example2

S → AaAb I0:S’ → .S

S → BbBa S → .AaAb

A → S → .BbBa

B → A → .

B → .

Problem

FOLLOW(A)={a,b}

FOLLOW(B)={a,b}

a reduce by A → b reduce by A →

reduce by B → reduce by B →

reduce/reduce conflict reduce/reduce conflict

SLR Weakness
• In SLR method, state i makes a reduction by

A→a when the current token is a:
– if A→a. is in Ii and a is in FOLLOW(A)

• In some situations, bA cannot be followed

by the terminal a in a right-sentential form

when ba and the state i are on the stack top.

This means that making reduction in this

case is not correct.

LR(1) Item

• To avoid some invalid reductions, the states need to carry more

information.

• Extra information is put into a state by including a terminal symbol

as a second component in an item.

• A LR(1) item is:

A → a.b,a where a is the look-head of the LR(1) item

(a is a terminal or end-marker.)

• Such an object is called an LR(1) item.

– 1 refers to the length of the second component

– The lookahead has no effect on an item of the form [A → a.b,a], where b is not

empty.

– But an item of the form [A → a.,a] calls for a reduction by A → a only if the next

input symbol is a.

– The set of such a’s will be a subset of FOLLOW(A), and could be proper.

LR(1) Item (cont.)

• A state will contain A → a.,a1 where {a1,...,an} FOLLOW(A)

...

A → a.,an

• When b is empty (A → a.,a1/a2/ .. /an), we do the reduction by A→a only if

the next input symbol is in the set {a1,a2, .. ,an}

(not for any terminal in FOLLOW(A) as with SLR).

Canonical Collection

• The construction of the canonical collection of the sets

of LR(1) items are similar to the construction of the

canonical collection of the sets of LR(0) items, except

that closure and goto operations work a little bit

different.

closure(I) is: (where I is a set of LR(1) items)

– every LR(1) item in I is in closure(I)

– if A→a.Bb,a in closure(I) and B→ is a rule of G; then B→.,b will be

in the closure(I) for each terminal b in FIRST(ba) .

goto operation

• If I is a set of LR(1) items and X is a grammar

symbol (terminal or non-terminal), then goto(I,X)

is defined as follows:

– If A → a.Xb,a is in I

then every item in closure({A → aX.b,a}) will

be in goto(I,X).

Canonical LR(1) Collection

• Algorithm:
C is { closure({S’→.S,$}) }

repeat the followings until no more set of LR(1) items can be added

to C.

for each I in C and each grammar symbol X

if goto(I,X) is not empty and not in C

add goto(I,X) to C

• goto function is a DFA on the sets in C.

Short Notation

• A set of LR(1) items containing the
following items

A → a.b,a1

...

A → a.b,an

can be written as

A → a.b,a1/a2/.../an

Canonical LR(1) Collection

S → AaAb I0:S’ → .S ,$ I1: S’ → S. ,$

S → BbBa S → .AaAb ,$

A → S → .BbBa ,$ I2: S → A.aAb ,$

B → A → . ,a

B → . ,b I3: S → B.bBa ,$

I4: S → Aa.Ab ,$ I6: S → AaA.b ,$ I8: S → AaAb. ,$

A → . ,b

I5: S → Bb.Ba ,$ I7: S → BbB.a ,$ I9: S → BbBa. ,$

B → . ,a

S

A

B

a

b

A

B

b

a

to I4

to I5

An Example
I0: closure({(S’ → • S, $)}) =

(S’ → • S, $)

(S → • C C, $)

(C → • c C, c/d)

(C → • d, c/d)

I1: goto(I0, S) = (S’ → S • , $)

I2: goto(I0, C) =

(S → C • C, $)
(C → • c C, $)

(C → • d, $)

I3: goto(I0, c) =

(C → c • C, c/d)
(C → • c C, c/d)

(C → • d, c/d)

: goto(I3, c) = I3
: goto(I3, d) = I4

1. S’ → S

2. S → C C

3. C → c C

4. C → d

I4: goto(I0, d) =

(C → d •, c/d)

I5: goto(I2, C) =

(S → C C •, $)

I6: goto(I2, c) =

(C → c • C, $)

(C → • c C, $)

(C → • d, $)
: goto(I6, c) = I6
: goto(I6, d) = I7

I7: goto(I2, d) =

(C → d •, $)

I8: goto(I3, C) =

(C → c C •, c/d)

I9: goto(I6, C) =

(C → c C •, $)

C → d •, c/d

C

(S’ → S • , $

S → C • C, $

C → • c C, $

C → • d, $

C → c • C, c/d

C → • c C, c/d

C → • d, c/d

S → C C •, $

C → c • C, $

C → • c C, $

C → • d, $

C → d •, $

C → c C •, c/d

S’ → • S, $

S → • C C, $

C → • c C, c/d

C → • d, c/d

C → cC •, $

S

C

c

d

C

c

d
c

c

C

I0

I2

I3

I4

I5

I1

I6

I7

I8

I9

d

d

An Example
I0 I1

I2

I6 I9

I7

S

C
C

C

C
c

c

c

d

d

d d

I8

I4

I3

I5

An Example

c d $ S C

0 s3 s4 1 2

1 a

2 s6 s7 5

3 s3 s4 8

4 r3 r3

5 r1

6 s6 s7 9

7 r3

8 r2 r2

9 r2

The Core of LR(1) Items

• The core of a set of LR(1) Items is the set

of their first components (i.e., LR(0)

items)

• The core of the set of LR(1) items

{ (C → c • C, c/d),

(C → • c C, c/d),

(C → • d, c/d) }

is { C → c • C,

C → • c C,

C → • d }

Construction of LR(1) Parsing

Tables
1. Construct the canonical collection of sets of LR(1) items

for G’. C{I0,...,In}

2. Create the parsing action table as follows
• If a is a terminal, A→a.ab,b in Ii and goto(Ii,a)=Ij then action[i,a] is

shift j.

• If A→a.,a is in Ii , then action[i,a] is reduce A→a where AS’.

• If S’→S.,$ is in Ii , then action[i,$] is accept.

• If any conflicting actions are generated by these rules, the grammar is

not LR(1).

3. Create the parsing goto table
• for all non-terminals A, if goto(Ii,A)=Ij then goto[i,A]=j

4. All entries not defined by (2) and (3) are errors.

5. Initial state of the parser contains S’→.S,$

LALR Parsing Tables

1. LALR stands for Lookahead LR.

2. LALR parsers are often used in practice because LALR parsing
tables are smaller than LR(1) parsing tables.

3. The number of states in SLR and LALR parsing tables for a
grammar G are equal.

4. But LALR parsers recognize more grammars than SLR parsers.

5. Bison creates a LALR parser for the given grammar.

6. A state of an LALR parser will again be a set of LR(1) items.

Creating LALR Parsing Tables

Canonical LR(1) Parser ➔ LALR Parser

shrink # of states

• This shrink process may introduce a reduce/reduce

conflict in the resulting LALR parser (so the grammar is

NOT LALR)

• But, this shrink process does not produce a shift/reduce

conflict.

The Core of Set of LR(1) Items

• The core of a set of LR(1) items is the set of its first component.

Ex:S → L.=R,$ ➔ S → L.=R Core

R → L.,$ R → L.
• We will find the states (sets of LR(1) items) in a canonical LR(1) parser with

same cores. Then we will merge them as a single state.

I1:L → id.,= A new state: I12: L → id.,=

➔ L → id.,$

I2:L → id.,$ have same core, merge them

• We will do this for all states of a canonical LR(1) parser to get the states of
the LALR parser.

• In fact, the number of the states of the LALR parser for a grammar will be
equal to the number of states of the SLR parser for that grammar.

Creation of LALR Parsing

Tables
1. Create the canonical LR(1) collection of the sets of LR(1) items for

the given grammar.

2. For each core present; find all sets having that same core; replace
those sets having same cores with a single set which is their union.

C={I0,...,In} ➔ C’={J0,...,Jm} where m n

3. Create the parsing tables (action and goto tables) same as the
construction of the parsing tables of LR(1) parser.

1. Note that: If J=Ii1 ... Iik since Ii1,...,Iik have same cores

➔ cores of goto(Ii1,X),...,goto(Iik,X) must be same.

2. So, goto(J,X)=K where K is the union of all sets of items having same
cores as goto(Ii1,X).

4. If no conflict is introduced, the grammar is LALR(1) grammar.
(We may only introduce reduce/reduce conflicts; we cannot
introduce a shift/reduce conflict)

C → d •, c/d

C

(S’ → S • , $

S → C • C, $

C → • c C, $

C → • d, $

C → c • C, c/d

C → • c C, c/d

C → • d, c/d

S → C C •, $

C → c • C, $

C → • c C, $

C → • d, $

C → d •, $

C → c C •, c/d

S’ → • S, $

S → • C C, $

C → • c C, c/d

C → • d, c/d

C → cC •, $

S

C

c

d

C

c

d

c

c

C

I0

I2

I3

I4

I5

I1

I6

I7

I8

I9

d

d

C → d •, c/d

C

(S’ → S • , $

S → C • C, $

C → • c C, $

C → • d, $

C → c • C, c/d

C → • c C, c/d

C → • d, c/d

S → C C •, $

C → c • C, $

C → • c C, $

C → • d, $

C → d •, $

C → c C •, c/d/$

S’ → • S, $

S → • C C, $

C → • c C, c/d

C → • d, c/d

S

C

c

d

C

c

d

c

c

C

I0

I2

I3

I4

I5

I1

I6

I7

I89

d

d

C

(S’ → S • , $

S → C • C, $

C → • c C, $

C → • d, $

C → c • C, c/d

C → • c C, c/d

C → • d, c/d

S → C C •, $

C → c • C, $

C → • c C, $

C → • d, $

C → d •, c/d/$

C → c C •, c/d/$

S’ → • S, $

S → • C C, $

C → • c C, c/d

C → • d, c/d

S

C

c

C

c

d

c

c

C

I0

I2

I3

I5

I1

I6

I47

I89

d

d

d

C

(S’ → S • , $

S → C • C, $

C → • c C, $

C → • d, $
S → C C •, $

C → c • C, c/d/$

C → • c C,c/d/$

C → • d,c/d/$

C → d •, c/d/$

C → c C •, c/d/$

S’ → • S, $

S → • C C, $

C → • c C, c/d

C → • d, c/d

S

C

d

C

c

d

c

I0

I2

I5

I1

I36

I47

I89

d
c

LALR Parse Table

c d $ S C

0 s36 s47 1 2

1 acc

2 s36 s47 5

36 s36 s47 89

47 r3 r3 r3

5 r1

89 r2 r2 r2

Shift/Reduce Conflict

• We said that we cannot introduce a shift/reduce conflict during the
shrink process for the creation of the states of a LALR parser.

• Assume that we can introduce a shift/reduce conflict. In this case, a
state of LALR parser must have:

A → a.,a and B → b.a,b

• This means that a state of the canonical LR(1) parser must have:

A → a.,a and B → b.a,c

But, this state also has a shift/reduce conflict; i.e., the original

canonical LR(1) parser has a conflict.

(Reason for this, the shift operation does not depend on

lookaheads)

Reduce/Reduce Conflict

• But, we may introduce a reduce/reduce conflict during the shrink

process for the creation of the states of a LALR parser.

I1 : A → a.,a I2: A → a.,b

B → b.,b B → b.,c

I12: A → a.,a/b ➔ reduce/reduce conflict

B → b.,b/c

Canonical LALR(1)– Ex2
S’ → S

1) S → L=R

2) S → R

3) L→ *R

4) L → id

5) R → L

I0:S’ → .S,$

S → .L=R,$

S → .R,$

L → .*R,$/=

L → .id,$/=

R → .L,$

I1:S’ → S.,$

I2:S → L.=R,$

R → L.,$

I3:S → R.,$

I411:L → *.R,$/=

R → .L,$/=

L→ .*R,$/=

L → .id,$/=

I512:L → id.,$/=

I6:S → L=.R,$

R → .L,$

L → .*R,$

L → .id,$

I713:L → *R.,$/=

I810: R → L.,$/=

I9:S → L=R.,$

to I6

to I713

to I810

to I411

to I512

to I810

to I411

to I512

to I9

S

L

L

L

R

R

id

id

id

R

*

*

*

Same Cores

I4 and I11

I5 and I12

I7 and I13

I8 and I10

LALR(1) Parsing– (for Ex2)

id * = $ S L R

0 s5 s4 1 2 3

1 acc

2 s6 r5

3 r2

4 s5 s4 8 7

5 r4 r4

6 s12 s11 10 9

7 r3 r3

8 r5 r5

9 r1

no shift/reduce or

no reduce/reduce conflict

so, it is a LALR(1) grammar

Using Ambiguous Grammars

• All grammars used in the construction of LR-parsing tables must be
unambiguous.

• Can we create LR-parsing tables for ambiguous grammars ?

– Yes, but they will have conflicts.

– We can resolve these conflicts in favor of one of them to disambiguate the
grammar.

– At the end, we will have again an unambiguous grammar.

• Why use an ambiguous grammar?

– Some of the ambiguous grammars are more natural, and a corresponding
unambiguous grammar can be very complex.

– Usage of an ambiguous grammar may eliminate unnecessary reductions.

• Ex.

E → E+T | T

E → E+E | E*E | (E) | id ➔ T → T*F | F

F → (E) | id

Sets for Ambiguous Grammar
I0: E’ → .E

E → .E+E

E → .E*E

E → .(E)

E → .id

I1: E’ → E.
E → E .+E

E → E .*E

I2: E → (.E)

E → .E+E

E → .E*E

E → .(E)

E → .id

I3: E →

id.

I4: E → E +.E

E → .E+E

E → .E*E

E → .(E)

E → .id

I5: E → E *.E

E → .E+E

E → .E*E

E → .(E)

E → .id

I6: E → (E.)

E → E.+E

E → E.*E

I7: E → E+E.
E → E.+E

E → E.*E

I8: E → E*E.
E → E.+E

E → E.*E

I9: E →

(E).

I5

)

E

E

E

E

*

+

+

+

+

*

*

*

(

(

(
(

id

id

id
id

I4

I2

I2

I3

I3

I4

I4

I5

I5

SLR Tables for Amb Grammar

FOLLOW(E) = { $,+,*,) }

State I7 has shift/reduce conflicts for symbols + and *.

I0 I1 I7I4
E+E

when current token is +

shift ➔ + is right-associative

reduce ➔ + is left-associative

when current token is *

shift ➔ * has higher precedence than +

reduce ➔ + has higher precedence than *

SLR Tables for Amb Grammar

FOLLOW(E) = { $,+,*,) }

State I8 has shift/reduce conflicts for symbols + and *.

I0 I1 I8I5
E*E

when current token is *

shift ➔ * is right-associative

reduce ➔ * is left-associative

when current token is +

shift ➔ + has higher precedence than *

reduce ➔ * has higher precedence than +

id + * () $ E

0 s3 s2 1

1 s4 s5 acc

2 s3 s2 6

3 r4 r4 r4 r4

4 s3 s2 7

5 s3 s2 8

6 s4 s5 s9

7 r1 s5 r1 r1

8 r2 r2 r2 r2

9 r3 r3 r3 r3

Action Goto
SLR Tables for Amb Grammar

Error Recovery in LR Parsing

• An LR parser will detect an error when it consults the parsing action

table and finds an error entry. All empty entries in the action table

are error entries.

• Errors are never detected by consulting the goto table.

• An LR parser will announce error as soon as there is no valid

continuation for the scanned portion of the input.

• A canonical LR parser (LR(1) parser) will never make even a single

reduction before announcing an error.

• The SLR and LALR parsers may make several reductions before

announcing an error.

• But, all LR parsers (LR(1), LALR and SLR parsers) will never shift

an erroneous input symbol onto the stack.

Panic Mode Error Recovery

• Scan down the stack until a state s with a goto on a

particular nonterminal A is found. (Get rid of everything

from the stack before this state s).

• Discard zero or more input symbols until a symbol a is

found that can legitimately follow A.

– The symbol a is simply in FOLLOW(A), but this may not work for

all situations.

• The parser stacks the nonterminal A and the state

goto[s,A], and it resumes normal parsing.

• This nonterminal A is normally a basic programming

block (there can be more than one choice for A).

– stmt, expr, block, …

Phrase-Level Error Recovery

• Each empty entry in the action table is marked

with a specific error routine.

• An error routine reflects the error that the user

most likely will make in that case.

• An error routine inserts the symbols into the

stack or the input (or it deletes the symbols from

the stack and the input, or it can do both

insertion and deletion).

– missing operand

– unbalanced right parenthesis

id + * () $ E

0 s3 e1 e1 s2 e2 e1 1

1 e3 s4 s5 e3 e2 acc

2 s3 e1 e1 s2 e2 e1 6

3 e1 r4 r4 e3 r4 r4

4 s3 e1 e1 s2 e2 e1 7

5 s3 e1 e1 s2 e1 e1 8

6 e3 s4 s5 e3 s9 e4

7 e3 r1 s5 e3 r1 r1

8 e3 r2 r2 e3 r2 r2

9 e3 r3 r3 e3 r3 r3

Action Goto
SLR Tables with Error Actions

Error Messages

• e1: Expected beginning of expression or subexpression (id or ‘(‘)

– Fix: Shift id into stack and goto state 3 making believe we saw an id

– If do this, message should be “expected operand”

• e2: Unbalanced right parenthesis

– Fix: Ignore the ‘)’

• e3: Found start of subexpression when expecting continuation or

end of current subexpression

– Fix: ??

• e4: Found end of expression when expecting continuation (operator)

or end of subexpression (‘)’)

– Fix: ??

