CS415 Compilers Syntax Analysis Bottom-up Parsing

These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy \& Linda Torczon at Rice University

Shift reduce parsers are easily built and easily understood
A shift-reduce parser has just four actions

- Shift - next word is shifted onto the stack
- Reduce - right end of handle is at top of stack

Locate left end of handle within the stack Pop handle off stack \& push appropriate lhs

- Accept - stop parsing \& report success
- Error - call an error reporting/recovery routine

Accept \& Error are simple
Shift is just a push and a call to the scanner
Reduce takes |rhs| pops (or 2*|rhs| pops) \& 1 push
If handle-finding requires state, put it in the stack $\Rightarrow 2 x$ work

The $L R(1)$ table construction algorithm uses $L R(1)$ items to represent valid configurations of an LR(1) parser

An $\operatorname{LR}(k)$ item is a pair $[P, \delta]$, where
P is a production $A \rightarrow \beta$ with a at some position in the rhs
δ is a lookahead string of length $\leq k \quad$ (words or EOF)
The in an item indicates the position of the top of the stack
LR(1):
[$A \rightarrow \cdot \beta \gamma, \underline{a}$] means that the input seen so far is consistent with the use of $A \rightarrow \beta \gamma$ immediately after the symbol on top of the stack
[$A \rightarrow \beta \cdot \gamma, \underline{a}$] means that the input seen so far is consistent with the use of $A \rightarrow \beta \gamma$ at this point in the parse, and that the parser has already recognized β.
 symbol of \underline{a} is consistent with reducing to A.

High-level overview
1 Build the canonical collection of sets of LR(k) Items, I
a Begin in an appropriate state, s_{0}

- Assume: $S^{\prime} \rightarrow S$, and S^{\prime} is unique start symbol that does not occur on any RHS of a production (extended CFG ECFG)
- [S' \rightarrow S,EOF], along with any equivalent items
- Derive equivalent items as closure (s_{0})
b Repeatedly compute, for each s_{k}, and each $X, \operatorname{goto}\left(s_{k}, X\right)$
- If the set is not already in the collection, add it
- Record all the transitions created by goto()

This eventually reaches a fixed point
2 Fill in the table from the collection of sets of LR(1) items

> The canonical collection completely encodes the transition diagram for the handle-finding DFA

Review - Computing Closures

Closure(s) adds all the items implied by items already in s

- Any item $[A \rightarrow \beta \bullet \underline{B} \delta, a]$ implies $[B \rightarrow \bullet \tau, x]$ for each production with B on the $/ h s$, and each $x \in \operatorname{FIRST}(\delta \underline{a})$ - for $\operatorname{LR}(1)$ item

The algorithm

$$
\begin{aligned}
& \text { Closure }(s) \\
& \text { while }(s \text { is still changing) } \\
& \forall \text { items }[A \rightarrow \beta \cdot B \delta, \underline{a}] \in s \\
& \forall \text { productions } B \rightarrow \tau \in P \\
& \forall \underline{\mathrm{~b}} \in \operatorname{FIRST}(\delta \underline{a}) / / \delta \text { might be } \varepsilon \\
& \text { if }[B \rightarrow \cdot \tau, \underline{b}] \notin s \\
& \text { then add }[B \rightarrow \cdot \tau, \underline{b}] \text { to } s
\end{aligned}
$$

> Classic fixed-point method
> Halts because $s \subset$ Items Closure "fills out" a state

Review - Computing Gotos

Goto(s, x) computes the state that the parser would reach if it recognized an x while in state s

- Goto($\{[A \rightarrow \beta \bullet X \delta, \underline{a}]\}, X)$ produces $[A \rightarrow \beta X \bullet \delta, \underline{a}] \quad$ (easy part)
- Should also includes closure ($A \rightarrow \beta X \bullet \delta, a]$) (fill out the state)

The algorithm

```
Goto(s,X)
    new\leftarrow\varnothing
     items [A->\beta\cdotX\delta,a]\ins
        new \leftarrownew \cup[A->\betaX\cdot\delta,q]
    return closure(new)
```

$>$ Not a fixed-point method!
> Straightforward computation
> Uses closure()
Goto() moves forward

RUTGERS

Start from $s_{0}=$ closure $\left(\left[S^{\prime} \rightarrow S, E O F\right]\right)$
Repeatedly construct new states, until all are found
The algorithm

```
ccos closure([S'->\bulletS, EOF])
CC}\leftarrow{c\mp@subsup{c}{0}{}
while( new sets are still being added to CC)
    for each unmarked set cc, \inCC
        mark cc, as processed
        for each x following a - in an item in cc,
        temp \leftarrow goto(ccc,x)
        if temp & CC
        then CC \leftarrowCCU {temp}
        record transitions from cc, to temp on }
```

> Fixed-point computation (worklist version)
> Loop adds to CC
$>C C \subseteq 2^{\text {ITEMS }}$, so CC is finite

RUTGERS
 One Example

Construct LR(0) States

1	$\langle\mathrm{~S}\rangle::=\mathrm{a}\langle\mathrm{A}\rangle\langle\mathrm{B}\rangle \mathrm{e}$
2	$\langle\mathrm{~A}\rangle::=\langle\mathrm{A}\rangle \mathrm{b} \quad \mathrm{c}$
3	$\langle\mathrm{~A}\rangle::=\mathrm{b}$
4	$\langle\mathrm{~B}\rangle::=\mathrm{d}$

RUTGERS
 One Example

Construct LR(0) States

1	$\langle\mathrm{~S}\rangle::=\mathrm{a}\langle\mathrm{A}\rangle\langle\mathrm{B}\rangle \mathrm{e}$
2	$\langle\mathrm{~A}\rangle::=\langle\mathrm{A}\rangle \mathrm{b} \quad \mathrm{c}$
3	$\langle\mathrm{~A}\rangle::=\mathrm{b}$
4	$\langle\mathrm{~B}\rangle::=\mathrm{d}$

RUTGERS
 One Example

Construct LR(0) States

1	$\langle\mathrm{~S}\rangle::=\mathrm{a}\langle\mathrm{A}\rangle\langle\mathrm{B}\rangle \mathrm{e}$
2	$\langle\mathrm{~A}\rangle::=\langle\mathrm{A}\rangle \mathrm{b} \quad \mathrm{c}$
3	$\langle\mathrm{~A}\rangle::=\mathrm{b}$
4	$\langle\mathrm{~B}\rangle::=\mathrm{d}$

RUTGERS
 One Example

Construct LR(0) States

1	$\langle\mathrm{~S}\rangle::=\mathrm{a}\langle\mathrm{A}\rangle\langle\mathrm{B}\rangle \mathrm{e}$
2	$\langle\mathrm{~A}\rangle::=\langle\mathrm{A}\rangle \mathrm{b} \quad \mathrm{c}$
3	$\langle\mathrm{~A}\rangle::=\mathrm{b}$
4	$\langle\mathrm{~B}\rangle::=\mathrm{d}$

RUTGERS
 One Example

Construct LR(0) States

1	$\langle\mathrm{~S}\rangle::=\mathrm{a}\langle\mathrm{A}\rangle\langle\mathrm{B}\rangle \mathrm{e}$
2	$\langle\mathrm{~A}\rangle::=\langle\mathrm{A}\rangle \mathrm{b} \quad \mathrm{c}$
3	$\langle\mathrm{~A}\rangle::=\mathrm{b}$
4	$\langle\mathrm{~B}\rangle::=\mathrm{d}$

RUTGERS
 One Example

Construct LR(0) States

$$
\begin{array}{l|l}
1 & \langle\mathrm{~S}\rangle::=\mathrm{a}\langle\mathrm{~A}\rangle\langle\mathrm{B}\rangle \mathrm{e} \\
2 & \langle\mathrm{~A}\rangle::=\langle\mathrm{A}\rangle \mathrm{b} \quad \mathrm{c} \\
3 & \langle\mathrm{~A}\rangle::=\mathrm{b} \\
4 & \langle\mathrm{~B}\rangle::=\mathrm{d}
\end{array}
$$

RUTGERS
 One Example

Construct LR(0) States

$$
\begin{array}{l|l}
1 & \langle\mathrm{~S}\rangle::=\mathrm{a}\langle\mathrm{~A}\rangle\langle\mathrm{B}\rangle \mathrm{e} \\
2 & \langle\mathrm{~A}\rangle::=\langle\mathrm{A}\rangle \mathrm{b} \quad \mathrm{c} \\
3 & \langle\mathrm{~A}\rangle::=\mathrm{b} \\
4 & \langle\mathrm{~B}\rangle::=\mathrm{d}
\end{array}
$$

RUTGERS

One Example - LR(0) states

Construct LR(0) States

$$
\begin{array}{l|l}
1 & \langle\mathrm{~S}\rangle::=\mathrm{a}\langle\mathrm{~A}\rangle\langle\mathrm{B}\rangle \mathrm{e} \\
2 & \langle\mathrm{~A}\rangle::=\langle\mathrm{A}\rangle \mathrm{b} \quad \mathrm{c} \\
3 & \langle\mathrm{~A}\rangle::=\mathrm{b} \\
4 & \langle\mathrm{~B}\rangle::=\mathrm{d}
\end{array}
$$

RUTGERS Another Example - LR(1) states

Simplified, right recursive expression grammar

```
1: Goal }->\mathrm{ Expr
2: Expr }->\mathrm{ Term - Expr
3: Expr }->\mathrm{ Term
4: Term }->\mathrm{ Factor * Term
5: Term }->\mathrm{ Factor
6: Factor }->\mathrm{ ident
```

Symbol	FIRST
Goal	$\{$ ident $\}$
Expr	$\{$ ident $\}$
Term	$\{$ ident $\}$
Factor	$\{\underline{\text { ident }\}}$
-	$\{-\}$
$*$	$\{*\}$
ident	$\{$ ident $\}$

RUTGERSAnother Example

(building the collection)

$$
\begin{aligned}
& \text { 1: Goal } \rightarrow \text { Expr } \\
& \text { 2: Expr } \rightarrow \text { Term - Expr } \\
& \text { 3: Expr } \rightarrow \text { Term } \\
& \text { 4: Term } \rightarrow \text { Factor } * \text { Term } \\
& \text { 5: Term } \rightarrow \text { Factor } \\
& \text { 6: Factor } \rightarrow \text { ident }
\end{aligned}
$$

Symbol	FIRST
Goal	$\{$ ident $\}$
Expr	$\{$ ident $\}$
Term	$\{$ ident $\}$
Factor	$\left\{\begin{array}{c}\text { ident }\} \\ - \\ \star \\ \text { ident } \\ \text { id }\} \\ \text { \{ident }\} \\ \hline\end{array}\right.$

Initialization Step
$s_{0} \leftarrow \operatorname{closure}(\{[$ Goal $\rightarrow \cdot \operatorname{Expr}$, EOF] $\})=$
$\{$ Exppr \rightarrow - Term - Expr, EOF], [Expr \rightarrow • Term, EOF],
[Term \rightarrow • Factor * Term, -], [Term \rightarrow • Factor, -], [Term \rightarrow •
Factor * Term, EOF], [Term \rightarrow • Factor, EOF],
[Factor \rightarrow •ident, *], [Factor \rightarrow •ident, -], [Factor \rightarrow •ident, EOF]\}
$S \leftarrow\left\{S_{0}\right\}$

```
so }\leftarrow\operatorname{closure({[Goal }->\mathrm{ - Expr , EOF] } )
    { [Goal }->\mathrm{ - Expr , EOF], [Expr }->\mathrm{ - Term - Expr, EOF],
        [Expr }->\mathrm{ - Term, EOF], [Term }->\mathrm{ • Factor * Term , EOF],
        [Term }->\mathrm{ . Factor * Term , -], [Term }->\mathrm{ - Factor , EOF],
        [Term }->\mathrm{ - Factor, -], [Factor }->\mathrm{ - ident, EOF],
        [Factor }->\mathrm{ - ident , -], [Factor }->\mathrm{ - ident , *] }
```

Iteration 1

$$
\begin{aligned}
& s_{1} \leftarrow \operatorname{goto}\left(s_{0}, \text { Expr }\right) \\
& s_{2} \leftarrow \operatorname{goto}\left(s_{0}, \text { Term }\right) \\
& s_{3} \leftarrow \operatorname{goto}\left(s_{0}, \text { Factor }\right) \\
& s_{4} \leftarrow \operatorname{goto}\left(s_{0}, \text { ident }\right)
\end{aligned}
$$

Example

(building the collection)

```
so
    { [Goal }->\mathrm{ - Expr , EOF], [Expr }->\mathrm{ - Term - Expr, EOF],
        [Expr -> - Term, EOF], [Term -> . Factor * Term , EOF],
        [Term }->\mathrm{ . Factor * Term , -], [Term }->\mathrm{ • Factor , EOF],
        [Term }->\mathrm{ - Factor, -], [Factor }->\mathrm{ - ident , EOF],
        [Factor }->\mathrm{ - ident , -], [Factor }->\mathrm{ - ident , *] }
```


Iteration 1

$$
\begin{aligned}
& s_{1} \leftarrow \operatorname{goto}\left(s_{0}, \text { Expr }\right)=\{[\text { Goal } \rightarrow \text { Expr } \cdot \text {, EOF }]\} \\
& s_{2} \leftarrow \operatorname{goto}\left(s_{0}, \text { Term }\right)=\{[\text { Expr } \rightarrow \text { Term } \cdot \text { Expr , EOF }],[\text { Expr } \rightarrow \text { Term } \cdot, \\
& \quad \text { EOF }]\} \\
& s_{3} \leftarrow \operatorname{goto}\left(s_{0}, \text { Factor }\right)=\{[\text { Term } \rightarrow \text { Factor } \cdot * \text { Term, EOF }],[\text { Term } \rightarrow \\
& \\
& \quad \text { Factor } \cdot * \text { Term },-],[\text { Term } \rightarrow \text { Factor } \cdot \text {, EOF }],[\text { Term } \rightarrow \text { Factor } \cdot,-]\} \\
& s_{4} \leftarrow \text { goto }\left(s_{0}, \underline{\text { ident })}=\{[\text { Factor } \rightarrow \text { ident } \cdot \text { EOF }],[\text { Factor } \rightarrow \text { ident } \cdot,-],\right. \\
& \\
& \quad[\text { Factor } \rightarrow \underline{\text { ident } \cdot} \cdot *]\}
\end{aligned}
$$

RUTGERS

Example (building the collection)

Iteration 1

$$
\begin{aligned}
& s_{1} \leftarrow \operatorname{goto}\left(s_{0}, \text { Expr }\right)=\{[\text { Goal } \rightarrow \text { Expr } \cdot \text {, EOF] }\} \\
& s_{2} \leftarrow \operatorname{goto}\left(s_{0}, \text { Term }\right)=\{[\text { Expr } \rightarrow \text { Term • Expr , EOF], [Expr } \rightarrow \text { Term •, } \\
& \text { EOF] \} } \\
& s_{3} \leftarrow \operatorname{goto}\left(s_{0}, \text { Factor }\right)=\{[\text { Term } \rightarrow \text { Factor. * Term , EOF],[Term } \rightarrow \\
& \text { Factor • * Term , -], [Term } \rightarrow \text { Factor • EOF], [Term } \rightarrow \text { Factor •, -] \} } \\
& s_{4} \leftarrow \operatorname{goto}\left(s_{0}, \underline{\text { ident }}\right)=\{[\text { Factor } \rightarrow \text { ident } \cdot \text {, EOF],[Factor } \rightarrow \text { ident } \cdot,- \text {], } \\
& {\left[\text { Factor } \rightarrow \text { ident } \cdot{ }^{\star} \text {] }\right\}}
\end{aligned}
$$

Iteration 2

$$
\begin{aligned}
& s_{5} \leftarrow \operatorname{goto}\left(s_{2},-\right) \\
& s_{6} \leftarrow \operatorname{goto}\left(s_{3}, *\right)
\end{aligned}
$$

Iteration 1

Iteration 2

$$
\begin{aligned}
s_{5} & \leftarrow \operatorname{goto}\left(s_{2},-\right)=\{[\text { Expr } \rightarrow \text { Term }-\cdot \text { Expr , EOF }],[\text { Expr } \rightarrow \cdot \text { Term }- \text { Expr , EOF }],[\text { Expr } \\
& \rightarrow \cdot \text { Term, EOF], }[\text { Term } \rightarrow \cdot \text { Factor } * \text { Term },-],[\text { Term } \rightarrow \cdot \text { Factor },-],[\text { Term } \rightarrow \cdot \text { Factor } \\
& * \text { Term, EOF }],[\text { Term } \rightarrow \cdot \text { Factor , EOF }],[\text { Factor } \rightarrow \cdot \text { ident }, *],[\text { Factor } \rightarrow \cdot \text { ident },-], \\
& {[\text { Factor } \rightarrow \cdot \text { ident , EOF }]\} }
\end{aligned}
$$

$$
s_{6} \leftarrow \operatorname{goto}\left(s_{3}, *\right)=\ldots \text { see next page }
$$

$$
\begin{aligned}
& s_{1} \leftarrow \operatorname{goto}\left(s_{0}, \text { Expr }\right)=\{\text { [Goal } \rightarrow \text { Expr } \cdot \text {, EOF] }\} \\
& s_{2} \leftarrow \operatorname{goto}\left(s_{0}, \text { Term }\right)=\{[\text { Expr } \rightarrow \text { Term • Expr , EOF], [Expr } \rightarrow \text { Term } \cdot \text {, } \\
& \text { EOF] \} } \\
& s_{3} \leftarrow \operatorname{goto}\left(s_{0}, \text { Factor }\right)=\{[\text { Term } \rightarrow \text { Factor } \cdot * \text { Term , EOF],[Term } \rightarrow \\
& \text { Factor • * Term , -], [Term } \rightarrow \text { Factor • EOF], [Term } \rightarrow \text { Factor •, -] \} } \\
& s_{4} \leftarrow \operatorname{goto}\left(s_{0}, \underline{\text { ident })}\right)=\{[\text { Factor } \rightarrow \text { ident } \cdot \text {, EOF],[Factor } \rightarrow \text { ident } \cdot,-], \\
& \text { [Factor } \left.\rightarrow \text { ident } \cdot{ }^{\star} \text {] }\right\}
\end{aligned}
$$

Iteration 2

$$
\begin{aligned}
& s_{5} \leftarrow \text { goto }\left(s_{2},-\right)=\{[\text { Expr } \rightarrow \text { Term }-\cdot \text { Expr }, \text { EOF }],[\text { Expr } \rightarrow \cdot \text { Term }- \\
&\text { Expr, EOF }],[\text { Expr } \rightarrow \cdot \text { Term }, \text { EOF }],[\text { Term } \rightarrow \cdot \text { Factor } * \text { Term },-],[\text { Term } \rightarrow \\
&\text { Factor } * \text { Term, EOF }],[\text { Term } \rightarrow \cdot \text { Factor, },-],[\text { Term } \rightarrow \cdot \text { Factor, EOF }], \\
& {[\text { Factor } \rightarrow \cdot \text { ident }, \star],[\text { Factor } \rightarrow \cdot \text { ident },-],[\text { Factor } \rightarrow \cdot \text { ident , EOF }]\} }
\end{aligned}
$$

$$
\begin{aligned}
& s_{6} \leftarrow \operatorname{goto}\left(s_{3}, *\right)=\{[\text { Term } \rightarrow \text { Factor * . Term , EOF], [Term } \rightarrow \text { Factor * . } \\
& \text { Term , -], [Term } \rightarrow \text { •Factor * Term , EOF], [Term } \rightarrow \text { •Factor * Term , -], } \\
& \text { [Term } \rightarrow \text { • Factor , EOF], [Term } \rightarrow \text { • Factor, -], [Factor } \rightarrow \text { •ident , EOF], } \\
& \text { [Factor } \rightarrow \text { •ident , -], [Factor } \rightarrow \text { •ident , *] \} }
\end{aligned}
$$

Iteration 3

$$
\begin{aligned}
& s_{7} \leftarrow \operatorname{goto}\left(s_{5}, \text { Expr }\right)=\{[\text { Expr } \rightarrow \text { Term }- \text { Expr } \cdot, \text { EOF }]\} \\
& s_{8} \leftarrow \operatorname{goto}\left(s_{6}, \text { Term }\right)=\{[\text { Term } \rightarrow \text { Factor } * \text { Term } \cdot \text { EOF }],[\text { Term } \rightarrow \\
& \left.\left.\quad \text { Factor }{ }^{*} \text { Term } \cdot,-\right]\right\} \\
& \operatorname{goto}\left(s_{5}, \text { Term }\right)=s_{2}, \operatorname{goto}\left(s_{5}, \text { factor }\right)=s_{3}, \operatorname{goto}\left(s_{5}, \text { ident }\right)=s_{4} \\
& \operatorname{goto}\left(s_{6}, \text { Factor }\right)=s_{3}, \operatorname{goto}\left(s_{6}, \text { ident }\right)=s_{4}
\end{aligned}
$$

```
S
    [Expr }->\mathrm{ • Term , EOF], [Term }->\mathrm{ • Factor * Term, EOF],
    [Term }->\mathrm{ • Factor * Term , -], [Term }->\mathrm{ • Factor , EOF],
    [Term }->\mathrm{ - Factor, -], [Factor }->\mathrm{ - ident , EOF],
    [Factor }->\mathrm{ • ident , -], [Factor }->\mathrm{ • ident, *]}
S
S
S : { [Term }->\mathrm{ Factor * * Term, EOF],[Term }->\mathrm{ Factor • * Term , -],
    [Term }->\mathrm{ Factor • , EOF], [Term }->\mathrm{ Factor •, -]}
S S :{[Factor }->\mathrm{ ident •, EOF],[Factor }->\mathrm{ ident •, -], [Factor }->\mathrm{ ident • * *] }
S S : {[Expr -> Term - Expr , EOF], [Expr ->•Term Expr ,EOF],
    [Expr -> - Term , EOF], [Term -> • Factor * Term , -],
    [Term ->- Factor,-],[Term ->•Factor * Term, EOF],
    [Term }->\mathrm{ • Factor , EOF], [Factor }->\mathrm{ - ident , *],
    [Factor }->\mathrm{ - ident , -], [Factor }->\mathrm{ - ident , EOF]}
```

```
\(\mathrm{S}_{6}:\{[\) Term \(\rightarrow\) Factor * . Term , EOF], [Term \(\rightarrow\) Factor * Term ,-],
    [Term \(\rightarrow\) • Factor * Term, EOF], [ Term \(\rightarrow\) • Factor * Term ,-],
    [Term \(\rightarrow\) - Factor , EOF], [Term \(\rightarrow\) •Factor, -],
    [Factor \(\rightarrow\) - ident , EOF], [Factor \(\rightarrow\)-ident , - ], [Factor \(\rightarrow\) • ident , *] \(\}\)
\(\mathrm{S}_{7}:\{[\) Expr \(\rightarrow\) Term - Expr \(\cdot\), EOF \(]\}\)
\(\mathrm{S}_{8}:\{[\) Term \(\rightarrow\) Factor * Term \(\cdot\), EOF], [Term \(\rightarrow\) Factor * Term \(\cdot,-]\}\)
```


RUTGERS

The algorithm

```
set sx <S
    item i\in sx
        if i is [A->\beta \bullet\underline{d},\underline{b}]\mathrm{ and goto(s,a,a)=s}\mp@subsup{s}{k}{},\underline{a}\inT
        then AcTION [x,g] « "shift k"
        else if i is [S'->S S.EOF]
        then AcTION[x,EOF] \leftarrow "accept"
        else if i is [A->\beta \cdot,\underline{q}]
            then ACTION[x,q]}\leftarrow "reduce A->\beta
    \foralln\inNT
    if goto(s}(\mp@subsup{s}{x}{},n)=\mp@subsup{s}{k}{
        then Gото[x,n]}\leftarrow
```

Many items generate no table entry

Wrap Up Syntax Analysis Context-Sensitive Analysis

Read EaC: Chapters 3.4, 4.1-4.3

